Contained here are the main equivalences and inference rules for the COMP-2310 class at UWindsor.
Equivalences
E1. α∧∼α≡false
E2. α∨∼α≡true
E3. α∧α≡α
E4. α∨α≡α
E5. α∧true≡α
E6. α∨false≡α
E7. α∧false≡false
E8. α∨true≡true
E9. α∧β≡β∧α
E10. α∨β≡β∨α
E11. (α∧β)∧γ≡α∧(β∧γ)
E12. (α∨β)∨γ≡α∨(β∨γ)
E13. α∧(β∨γ)≡(α∧β)∨(α∧γ)
E14. α∨(β∧γ)≡(α∨β)∧(α∨γ)
E15. ∼∼α≡α
E16. ∼(α∧β)≡(∼α∨∼β)
E17. ∼(α∨β)≡(∼α∧∼β)
E18. α⟹β≡∼α∨β
E19. α⟹β≡∼β⟹∼α
E20. (α⟹β)∧(β⟹α)≡α⟺β
Inference Rules
I1. pp∨q
I2. p∧qp
I3. p,p⟹qq
I4. ∼q,p⟹q∼p
I5. p⟹q,q⟹rp⟹r
I6. p,qp∧q
First-Order Logic Equivalences
FE1. (∀x)α(x)≡(∀y)α(y)(α(x) does not contain y)
FE2. (∃x)α(x)≡(∃y)α(y)(α(x) does not contain y)
FE3. (∀x)α(x)∨β≡(∀x)(α(x)∨β)(β contains no free occurrence of x)
FE4. (∃x)α(x)∨β≡(∃x)(α(x)∨β)(β contains no free occurrence of x)
FE5. (∀x)α(x)∧β≡(∀x)(α(x)∧β)(β contains no free occurrence of x)
FE6. (∃x)α(x)∧β≡(∃x)(α(x)∧β)(β contains no free occurrence of x)
FE7. ∼(∀x)α(x)≡(∃x)∼α(x)
FE8. ∼(∃x)α(x)≡(∀x)∼α(x)
FE9. (∀x)α(x)∧(∀x)β(x)≡(∀x)(α(x)∧β(x))
FE10. (∃x)α(x)∨(∃x)β(x)≡(∃x)(α(x)∨β(x))
First-Order Logic Inference Rules
Gen: Generalization
α(x)(∀x)α(x)
x is a variable
UI: Universal Instantiation
(∀x)α(x)α(t)
α(x) is free for t (t is a variable or constant)
where α(t) results from α(x) after all free occurrences of x in α(x) are replaced by t
EQ: Existential Quantification
α(t)(∃x)α(x)
α(x) is free for t (t is a variable or constant)
where α(x) results from α(t) after some (may be all) free occurences of t in α(t) are replaced by x