Contained here are the main equivalences and inference rules for the COMP-2310 class at UWindsor.

Equivalences

E1. ααfalse
E2. ααtrue
E3. ααα
E4. ααα
E5. αtrueα
E6. αfalseα
E7. αfalsefalse
E8. αtruetrue
E9. αββα
E10. αββα
E11. (αβ)γα(βγ)
E12. (αβ)γα(βγ)
E13. α(βγ)(αβ)(αγ)
E14. α(βγ)(αβ)(αγ)
E15. ∼∼αα
E16. (αβ)(αβ)
E17. (αβ)(αβ)
E18. αβ≡∼αβ
E19. αβ≡∼βα
E20. (αβ)(βα)αβ

Inference Rules

I1. ppq

I2. pqp

I3. p,pqq

I4. q,pqp

I5. pq,qrpr

I6. p,qpq

First-Order Logic Equivalences

FE1. (x)α(x)(y)α(y)(α(x) does not contain y)
FE2. (x)α(x)(y)α(y)(α(x) does not contain y)
FE3. (x)α(x)β(x)(α(x)β)(β contains no free occurrence of x)
FE4. (x)α(x)β(x)(α(x)β)(β contains no free occurrence of x)
FE5. (x)α(x)β(x)(α(x)β)(β contains no free occurrence of x)
FE6. (x)α(x)β(x)(α(x)β)(β contains no free occurrence of x)
FE7. (x)α(x)(x)α(x)
FE8. (x)α(x)(x)α(x)
FE9. (x)α(x)(x)β(x)(x)(α(x)β(x))
FE10. (x)α(x)(x)β(x)(x)(α(x)β(x))

First-Order Logic Inference Rules

Gen: Generalization

α(x)(x)α(x)

x is a variable

UI: Universal Instantiation

(x)α(x)α(t)

α(x) is free for t (t is a variable or constant)
where α(t) results from α(x) after all free occurrences of x in α(x) are replaced by t

EQ: Existential Quantification

α(t)(x)α(x)

α(x) is free for t (t is a variable or constant)
where α(x) results from α(t) after some (may be all) free occurences of t in α(t) are replaced by x